11 research outputs found

    Deep learning approaches for segmentation of multiple sclerosis lesions on brain MRI

    Get PDF
    Multiple Sclerosis (MS) is a demyelinating disease of the central nervous system which causes lesions in brain tissues, especially visible in white matter with magnetic resonance imaging (MRI). The diagnosis of MS lesions, which is often performed visually with MRI, is an important task as it can help characterizing the progression of the disease and monitoring the efficacy of a candidate treatment. automatic detection and segmentation of MS lesions from MRI images offer the potential for a faster and more cost-effective performance which could also be immune to expert bias segmentation. In this thesis, we study automated approaches to segment MS lesions from MRI images. The thesis begins with a review of the existing literature on MS lesion segmentation and discusses their general limitations. We then propose three novel approaches that rely on Convolutional Neural Networks (CNNs) to segment MS lesions. The first approach demonstrates that the parameters of a CNN learned from natural images, transfer well to the tasks of MS lesion segmentation. In the second approach, we describe a novel multi-branch CNN architecture with end-to-end training that can take advantage of each MRI modalities individually. In that work, we also investigated the combination of MRI modalities leading to the best segmentation performance. In the third approach, we show an effective and novel generalization method for MS lesion segmentation when data are collected from multiple MRI scanning sites and as suffer from (site-)domain shifts. Finally, this thesis concludes with open questions that may benefit from future work. This thesis demonstrates the potential role of CNNs as a common methodological building block to address clinical problems in MS segmentation

    Multi-branch Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation

    Get PDF
    In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other publicly available tools.Comment: This paper has been accepted for publication in NeuroImag

    Deep Learning-Based Long Term Mortality Prediction in the National Lung Screening Trial

    Get PDF
    In this study, the long-term mortality in the National Lung Screening Trial (NLST) was investigated using a deep learning-based method. Binary classification of the non-lung-cancer mortality (i.e. cardiovascular and respiratory mortality) was performed using neural network models centered around a 3D-ResNet. The models were trained on a participant age, gender, and smoking history matched cohort. Utilising both the 3D CT scan and clinical information, the models can achieve an AUC of 0.73 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.60 and 0.38 respectively. By interpreting the trained models with 3D saliency maps, we examined the features on the CT scans that correspond to the mortality signal. By extracting information from 3D CT volumes, we can highlight regions in the thorax region that contribute to mortality that might be overlooked by the clinicians. Therefore, this can help focus preventative interventions appropriately, particularly for under-recognised pathologies and thereby reducing patient morbidity

    Scanner Invariant Multiple Sclerosis Lesion Segmentation from MRI

    Full text link
    This paper presents a simple and effective generalization method for magnetic resonance imaging (MRI) segmentation when data is collected from multiple MRI scanning sites and as a consequence is affected by (site-)domain shifts. We propose to integrate a traditional encoder-decoder network with a regularization network. This added network includes an auxiliary loss term which is responsible for the reduction of the domain shift problem and for the resulting improved generalization. The proposed method was evaluated on multiple sclerosis lesion segmentation from MRI data. We tested the proposed model on an in-house clinical dataset including 117 patients from 56 different scanning sites. In the experiments, our method showed better generalization performance than other baseline networks

    A hybrid CNN-RNN approach for survival analysis in a Lung Cancer Screening study

    Get PDF
    In this study, we present a hybrid CNN-RNN approach to investigate long-term survival of subjects in a lung cancer screening study. Subjects who died of cardiovascular and respiratory causes were identified whereby the CNN model was used to capture imaging features in the CT scans and the RNN model was used to investigate time series and thus global information. To account for heterogeneity in patients' follow-up times, two different variants of LSTM models were evaluated, each incorporating different strategies to address irregularities in follow-up time. The models were trained on subjects who underwent cardiovascular and respiratory deaths and a control cohort matched to participant age, gender, and smoking history. The combined model can achieve an AUC of 0.76 which outperforms humans at cardiovascular mortality prediction. The corresponding F1 and Matthews Correlation Coefficient are 0.63 and 0.42 respectively. The generalisability of the model is further validated on an 'external' cohort. The same models were applied to survival analysis with the Cox Proportional Hazard model. It was demonstrated that incorporating the follow-up history can lead to improvement in survival prediction. The Cox neural network can achieve an IPCW C-index of 0.75 on the internal dataset and 0.69 on an external dataset. Delineating subjects at increased risk of cardiorespiratory mortality can alert clinicians to request further more detailed functional or imaging studies to improve the assessment of cardiorespiratory disease burden. Such strategies may uncover unsuspected and under-recognised pathologies thereby potentially reducing patient morbidity

    Delineating COVID-19 subgroups using routine clinical data identifies distinct in-hospital outcomes

    Get PDF
    The COVID-19 pandemic has been a great challenge to healthcare systems worldwide. It highlighted the need for robust predictive models which can be readily deployed to uncover heterogeneities in disease course, aid decision-making and prioritise treatment. We adapted an unsupervised data-driven model-SuStaIn, to be utilised for short-term infectious disease like COVID-19, based on 11 commonly recorded clinical measures. We used 1344 patients from the National COVID-19 Chest Imaging Database (NCCID), hospitalised for RT-PCR confirmed COVID-19 disease, splitting them equally into a training and an independent validation cohort. We discovered three COVID-19 subtypes (General Haemodynamic, Renal and Immunological) and introduced disease severity stages, both of which were predictive of distinct risks of in-hospital mortality or escalation of treatment, when analysed using Cox Proportional Hazards models. A low-risk Normal-appearing subtype was also discovered. The model and our full pipeline are available online and can be adapted for future outbreaks of COVID-19 or other infectious disease

    A new supervised retinal vessel segmentation method based on robust hybrid features

    No full text
    In this paper, we propose a new supervised retinal blood vessel segmentation method that combines a set of very robust features from different algorithms into a hybrid feature vector for pixel characterization. This 17-D feature vector consists of 13 Gabor filter responses computed at different configurations, contrast enhanced intensity, morphological top-hat.transformed intensity, vesselness measure, and B-COSFIRE filter response. A random forest classifier, known for its speed, simplicity, and information fusion capability, is trained with the hybrid feature vector. The chosen combination of the different types of individually strong features results in increased local information with better discrimination for vessel and non-vessel pixels in both healthy and pathological retinal images. The proposed method is evaluated in detail on two publicly available databases DRIVE and STARE. Average classification accuracies of 0.9513 and 0.9605 on the DRIVE and STARE datasets, respectively, are achieved. When the majority of the common performance metrics are considered, our method is superior to the state-of-the-art methods. Performance results show that our method also outperforms the state-of-the-art methods in both cross training and pathological cases. (C) 2016 Elsevier Ltd. All rights reserved

    Optimal method for ablation of atypical AVNRT

    No full text
    Abstract Background Considering that ablation of atypical AVNRT may be unsuccessful after ablation at the right posterior septum, in this study, we aimed to present an optimal method for ablation of atypical AVNRT. Also, we evaluated the efficacy of this technique for preventing recurrences. Methods This is a prospective, double-center study. It was conducted on 62 patients with atypical AVNRT referred for radiofrequency ablation. The patients were randomly divided into two groups before ablation: 1-Group A (n = 30): treated with conventional ablation at the anatomic area of the slow pathway; 2-Group B (n = 32): ablation was done 2 mm higher in the septum during fluoroscopy. Results The mean age of patients in groups A and B were 54 ± 11.7 and 55 ± 12.2, respectively (P = 0.43). In group A, ablation was successful in 24 (80%) patients following right-sided slow pathway ablation, and the remaining patients required further treatment with either a left-side approach (N = 4, 13.3%) or ablation of additional regions (N = 2, 6.7%). In group B, ablation was successful in all patients. After a 48-month follow-up, recurrence of symptomatic atypical AVNRT was detected in 4 (13.3%) patients of group A and none of group B patients (p < 0.001). Conclusion In patients with atypical AVNRT, ablation 2 mm above the conventional area is more promising regarding success rate and recurrence of the arrhythmia

    Delineating COVID-19 subgroups using routine clinical data identifies distinct in-hospital outcomes

    No full text
    Abstract The COVID-19 pandemic has been a great challenge to healthcare systems worldwide. It highlighted the need for robust predictive models which can be readily deployed to uncover heterogeneities in disease course, aid decision-making and prioritise treatment. We adapted an unsupervised data-driven model—SuStaIn, to be utilised for short-term infectious disease like COVID-19, based on 11 commonly recorded clinical measures. We used 1344 patients from the National COVID-19 Chest Imaging Database (NCCID), hospitalised for RT-PCR confirmed COVID-19 disease, splitting them equally into a training and an independent validation cohort. We discovered three COVID-19 subtypes (General Haemodynamic, Renal and Immunological) and introduced disease severity stages, both of which were predictive of distinct risks of in-hospital mortality or escalation of treatment, when analysed using Cox Proportional Hazards models. A low-risk Normal-appearing subtype was also discovered. The model and our full pipeline are available online and can be adapted for future outbreaks of COVID-19 or other infectious disease
    corecore